Source code for src.datafev.routines.smart_reservation.reservation

# The datafev framework

# Copyright (C) 2022,
# Institute for Automation of Complex Power Systems (ACS),
# E.ON Energy Research Center (E.ON ERC),
# RWTH Aachen University

# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
# persons to whom the Software is furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
# Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.


import pandas as pd
from datafev.algorithms.cluster.pricing_rule import idp
from datafev.algorithms.vehicle.routing_milp import smart_routing


[docs]def reservation_routine( ts, tdelta, system, fleet, solver, traffic_forecast, f_discount=0.001, f_markup=0.001, arbitrage_coeff=0.0, ): """ This routine is executed to reserve chargers for the EVs approaching a multi-cluster system. The smart reservations specify: - which cluster and which charger the approaching EVs must connect to, - optimal charging schedule of EVs, - and the payment for agreed charging service. Parameters ---------- ts : datetime Current time. tdelta : timedelta Resolution of scheduling. system : data_handling.multi_cluster Multi-cluster system object. fleet : data_handling.fleet EV fleet object. solver : pyomo.SolverFactory Optimization solver. traffic_forecast : dict of dict Traffic forecast data. f_discount : dict of float, optional Discount factor (to motivate load increase) in dynamic pricing. The default is 0.05. f_markup : dict of float, optional Markup factor (to motivate load decrease) in dynamic pricing. The default is 0.05. arbitrage_coeff : float, optional Arbitrage coefficient to distinguish G2V/V2G prices. The default is 0.0. Returns ------- None. """ reserving_vehicles = fleet.reserving_vehicles_at(ts) for ev in reserving_vehicles: #print(ev.vehicle_id) ############################################################################ ############################################################################ ############################################################################ # Start reservation protccol ############################################################################ ############################################################################ # Step 1: Identify available chargers available_chargers = system.query_availability( ev.t_arr_est, ev.t_dep_est, tdelta, traffic_forecast ) ############################################################################ ############################################################################ if len(available_chargers) == 0: ev.reserved = False else: ############################################################################ ############################################################################ # Step 2: Apply a specific reservation management strategy # Applied one is based on the smart routing strategy introduced in (doi: 10.1109/TTE.2022.3208627) ############################################################################ # Step 2.1: Identify candidate chargers and optimization parameters candidate_chargers_df = available_chargers.drop_duplicates() candidate_chargers_dc = candidate_chargers_df.T.to_dict() for cu_id, row in candidate_chargers_df.iterrows(): cc_id = row["cluster"] ch_rate = row["max p_ch"] ds_rate = row["max p_ds"] # It is assumed that power capability of EV battery is not SOC dependent p_ch = min(ch_rate, ev.p_max_ch) p_ds = min(ds_rate, ev.p_max_ds) arrsoc = ev.soc_arr_est + traffic_forecast["soc_dec"][cc_id] pardur = (ev.t_dep_est + traffic_forecast["dep_del"][cc_id]) - (ev.t_arr_est + traffic_forecast["arr_del"][cc_id]) soc_max = min(1, arrsoc + (p_ch * pardur.seconds) / ev.bCapacity) tarsoc = min(soc_max, ev.soc_tar_at_t_dep_est) candidate_chargers_dc[cu_id]["max p_ch"] = p_ch candidate_chargers_dc[cu_id]["max p_ds"] = p_ds candidate_chargers_dc[cu_id]["arrsoc"] = arrsoc candidate_chargers_dc[cu_id]["tarsoc"] = tarsoc candidate_chargers_dc[cu_id]["arrtime"] = int((ev.t_arr_est+traffic_forecast["arr_del"][cc_id]-ts)/tdelta) candidate_chargers_dc[cu_id]["deptime"] = int((ev.t_dep_est+traffic_forecast["dep_del"][cc_id]-ts)/tdelta) candidate_chargers = pd.DataFrame(candidate_chargers_dc).T ######################################################################### ############################################################################ # Step 2.2: Clusters designing their offers g2v_dps = {} v2g_dps = {} arrtime_min = ev.t_arr_est + candidate_chargers["arrtime"].min() * tdelta deptime_max = ev.t_arr_est + candidate_chargers["deptime"].max() * tdelta for cu_id in candidate_chargers.index: cc_id = candidate_chargers.loc[cu_id, "cluster"] cc = system.clusters[cc_id] cc_power_ub = dict(enumerate(cc.upper_limit[arrtime_min:deptime_max].values)) cc_power_lb = dict(enumerate(cc.lower_limit[arrtime_min:deptime_max].values)) cc_schedule = dict(enumerate((cc.query_actual_schedule(arrtime_min, deptime_max, tdelta)).values)) tou_tariff = dict(enumerate((system.tou_price.loc[arrtime_min:deptime_max]).values)) # Step 2.2.1: Estimate the clusters' margins for additional charging load delta_soc=0.0 for t in cc_schedule.keys(): if candidate_chargers_dc[cu_id]["arrtime"]<=t<candidate_chargers_dc[cu_id]["deptime"]: delta_soc+=min(max(0.0,cc_power_ub[t]-cc_schedule[t]),candidate_chargers.loc[cu_id,"max p_ch"])*tdelta.seconds/ev.bCapacity candidate_chargers.loc[cu_id,"tarsoc"]=min(candidate_chargers.loc[cu_id,"tarsoc"], candidate_chargers.loc[cu_id,"arrsoc"]+delta_soc) #Step 2.2.2 Execute dynamic pricing algorithm dlp = idp( cc_schedule, cc_power_ub, cc_power_lb, tou_tariff, f_discount, f_markup, ) g2v_dps[cu_id] = dlp v2g_dps[cu_id] = dict([(k, dlp[k] * (1 - arbitrage_coeff)) for k in sorted(dlp.keys())]) ############################################################################ # Step 2.3: Remove the offers with insufficent energy offering and unnecessarily high power chargers candidate_chargers=candidate_chargers[candidate_chargers['tarsoc']==candidate_chargers["tarsoc"].max()] candidate_chargers=candidate_chargers[candidate_chargers['max p_ch']==candidate_chargers["max p_ch"].min()] ############################################################################ ############################################################################ # Step 2.4: Execute smart routing algorithm to find optimal cluster and schedules opt_horizon = list(range(int(candidate_chargers["deptime"].max()) + 1)) opt_step = tdelta.seconds ecap = ev.bCapacity v2gall = ev.v2g_allow tarsoc = candidate_chargers["tarsoc"].max() minsoc = ev.minSoC maxsoc = ev.maxSoC crtsoc = tarsoc crttime = int(candidate_chargers["deptime"].max()) arrtime = candidate_chargers["arrtime"].to_dict() deptime = candidate_chargers["deptime"].to_dict() arrsoc = candidate_chargers["arrsoc"].to_dict() pch = candidate_chargers["max p_ch"].to_dict() pds = candidate_chargers["max p_ds"].to_dict() p, s, selected_charger_id = smart_routing( solver, opt_horizon, opt_step, ecap, v2gall, tarsoc, minsoc, maxsoc, crtsoc, crttime, arrtime, deptime, arrsoc, pch, pds, g2v_dps, v2g_dps, ) ############################################################################ if all(value == 0 for value in p.values()): print() # Outputs of Step 2 selected_cluster_id = candidate_chargers.loc[selected_charger_id, "cluster"] selected_cluster = system.clusters[selected_cluster_id] selected_charger = selected_cluster.chargers[selected_charger_id] # End: Reservation management strategy ############################################################################ ############################################################################ ############################################################################ ############################################################################ # Step 3: Reserve the selected charger for the EV and assign relevant reservation parameters res_at = ts res_from = ev.t_arr_est + traffic_forecast["arr_del"][selected_cluster_id] res_until = ev.t_dep_est + traffic_forecast["dep_del"][selected_cluster_id] contract = {} contract["Schedule"] = True contract["Payment"] = True contract["P Schedule"] = {} contract["S Schedule"] = {} contract["G2V Price"] = {} contract["V2G Price"] = {} contract["Resolution"] = opt_step for t in opt_horizon: contract["P Schedule"][ts+ t * tdelta] = p[t] contract["S Schedule"][ts + t * tdelta] = s[t] if t<opt_horizon[-1]: contract["G2V Price"][ts + t * tdelta] = g2v_dps[selected_charger_id][t] contract["V2G Price"][ts + t * tdelta] = v2g_dps[selected_charger_id][t] selected_cluster.reserve(res_at, res_from, res_until, ev, selected_charger, contract) ev.contract = contract ev.reserved = True
############################################################################ ############################################################################ ############################################################################ ############################################################################ ############################################################################ # End reservation protcol