Source code for src.datafev.algorithms.vehicle.scheduling_milp

# The datafev framework

# Copyright (C) 2022,
# Institute for Automation of Complex Power Systems (ACS),
# E.ON Energy Research Center (E.ON ERC),
# RWTH Aachen University

# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
# persons to whom the Software is furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
# Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.


from pyomo.core import *
import pyomo.kernel as pmo


[docs]def minimize_cost( solver, opt_step, opt_horizon, ecap, v2gall, tarsoc, minsoc, maxsoc, crtsoc, crttime, inisoc, p_ch, p_ds, g2v_dps, v2g_dps, ): """ This function optimizes the charging schedule of a single EV with the objective of charging cost minimization for the given G2V and V2G price signals. The losses in power transfer are considered. Parameters ---------- opt_step : float Size of one time step in the optimization (seconds). opt_horizon : list of integers Time step identifiers in the optimization horizon. ecap : float Energy capacity of battery (kWs). v2gall : float V2G allowance discharge (kWs). tarsoc : float Target final soc (0<inisoc<1). minsoc : float Minimum soc. maxsoc : float Maximum soc. crtsoc : float Target soc at crttime. crttime : int Critical time s.t. s(srttime)> crtsoc. inisoc : dict of float Initial soc \in [0,1). p_ch : dict of float Nominal charging power (kW). p_ds : dict of float Nominal charging power (kW). g2v_dps : dict of float G2V dynamic price signal (Eur/kWh). v2g_dps : dict of float V2G dynamic price signal (Eur/kWh). Returns ------- p_schedule : dict Power schedule. Each item in the EV dictionary indicates the power to be supplied to the EV(kW) during a particular time step. s_schedule : dict SOC schedule. Each item in the EV dictionary indicates the SOC to be achieved by the EV by a particular time step. """ conf_period = {} for t in opt_horizon: if t < crttime: conf_period[t] = 0 else: conf_period[t] = 1 ####################Constructing the optimization model#################### model = ConcreteModel() model.T = Set(initialize=opt_horizon, ordered=True) # Time index set model.dt = opt_step # Step size model.E = ecap # Battery capacity in kWs model.P_CH = p_ch # Maximum charging power in kW model.P_DS = p_ds # Maximum discharging power in kW model.W_G2V = g2v_dps # Time-variant G2V cost coefficients model.W_V2G = v2g_dps # Time-variant V2G cost coefficients model.SoC_F = tarsoc # SoC to be achieved at the end model.conf = conf_period # Confidence period where SOC must be larger than crtsoc model.SoC_R = crtsoc # Minimim SOC must be ensured in the confidence period model.V2G_ALL = v2gall # Maximum energy that can be discharged V2G model.xp = Var( model.T, within=pmo.Binary ) # Binary variable having 1/0 if v is charged/discharged at t model.p = Var(model.T, within=Reals) # Net charge power at t model.p_pos = Var(model.T, within=NonNegativeReals) # Charge power at t model.p_neg = Var(model.T, within=NonNegativeReals) # Discharge power at t model.SoC = Var( model.T, within=NonNegativeReals, bounds=(minsoc, maxsoc) ) # SOC to be achieved at time step t # CONSTRAINTS def initialsoc(model): return model.SoC[0] == inisoc model.inisoc = Constraint(rule=initialsoc) def storageConservation( model, t ): # SOC of EV batteries will change with respect to the charged power and battery energy capacity if t < max(model.T): return model.SoC[t + 1] == (model.SoC[t] + model.p[t] * model.dt / model.E) else: return model.SoC[t] == model.SoC_F model.socconst = Constraint(model.T, rule=storageConservation) def socconfidence(model, t): return model.SoC[t] >= model.SoC_R * model.conf[t] model.socconfi = Constraint(model.T, rule=socconfidence) def supplyrule(model): return model.p[max(model.T)] == 0.0 model.supconst = Constraint(rule=supplyrule) def netcharging(model, t): return model.p[t] == model.p_pos[t] - model.p_neg[t] model.netchr = Constraint(model.T, rule=netcharging) def combinatorics31_pos(model, t): return model.p_pos[t] <= model.xp[t] * model.P_CH model.comb31pconst = Constraint(model.T, rule=combinatorics31_pos) def combinatorics31_neg(model, t): return model.p_neg[t] <= (1 - model.xp[t]) * model.P_DS model.comb31nconst = Constraint(model.T, rule=combinatorics31_neg) def v2g_limit(model): return sum(model.p_neg[t] * model.dt for t in model.T) <= model.V2G_ALL model.v2gconst = Constraint(rule=v2g_limit) # OBJECTIVE FUNCTION def obj_rule(model): return ( sum( ( model.W_G2V[t] * model.p_pos[t] - model.W_V2G[t] * model.p_neg[t] for t in opt_horizon[:-1] ) ) * opt_step / 3600 ) model.obj = Objective(rule=obj_rule, sense=minimize) solver.solve(model) p_schedule = {} s_schedule = {} for t in model.T: p_schedule[t] = model.p[t]() s_schedule[t] = model.SoC[t]() return p_schedule, s_schedule
if __name__ == "__main__": from pyomo.environ import SolverFactory import pandas as pd import numpy as np ########################################################################### # Input parameters solver = SolverFactory("gurobi") step = 300 # Time step size= 300 seconds = 5 minutes horizon = list(range(13)) # Optimization horizon= 12 steps = 60 minutes ecap = 55 * 3600 # Battery capacity= 55 kWh v2gall = 10 * 3600 # V2G allowance = 10 kWh tarsoc = 0.8 # Target SOC minsoc = 0.2 # Minimum SOC maxsoc = 1.0 # Maximum SOC crtsoc = 0.6 # Critical SOC crttime = 4 # Critical time inisoc = 0.5 # Initial SOC pch = 22 # Maximum charge power pds = 22 # Maximum discharge power g2v_tariff = np.random.uniform(low=0.4, high=0.8, size=12) g2v_dps = dict(enumerate(g2v_tariff)) # grid-to-vehicle tariff v2g_dps = dict(enumerate(g2v_tariff * 0.9)) # vehicle-to-grid tariff ########################################################################### print("Size of one time step:", step, "seconds") print("Optimization horizon covers", max(horizon), "time steps") print("Battery capacity of the EV:", ecap / 3600, "kWh") print("Initial SOC of the EV:", inisoc) print("Target SOC (at the end of optimization horizon):", tarsoc) print( "Critical SOC condition: SOC", crtsoc, "must be achieved by", crttime, "and must be maintained afterwards", ) print("V2G allowance:", v2gall / 3600, "kWh") print() print("Optimization is run G2V-V2G distinguishing price signals") p, soc = minimize_cost( solver, step, horizon, ecap, v2gall, tarsoc, minsoc, maxsoc, crtsoc, crttime, inisoc, pch, pds, g2v_dps, v2g_dps, ) print() print("Results are written in table") print("SOC (%): SOC trajectory in optimized schedule") print("P (kW): Power supply to the EV in optimized schedule") print() results = pd.DataFrame( columns=["G2V Tariff", "V2G Tariff", "P (kW)", "SOC (%)",], index=sorted(soc.keys()), ) results["G2V Tariff"] = pd.Series(g2v_dps) results["V2G Tariff"] = pd.Series(v2g_dps) results["P (kW)"] = pd.Series(p) results["SOC (%)"] = pd.Series(soc) * 100 print(results)